Wednesday, August 23, 2017

Best Ever Image of a Star’s Surface and Atmosphere

Using ESO’s Very Large Telescope Interferometer astronomers have constructed this remarkable image of the red supergiant star Antares. This is the most detailed image ever of this object, or any other star apart from the Sun.  Credit: ESO/K. Ohnaka

Using ESO’s Very Large Telescope Interferometer astronomers have constructed the most detailed image ever of a star — the red supergiant star Antares. They have also made the first map of the velocities of material in the atmosphere of a star other than the Sun, revealing unexpected turbulence in Antares’s huge extended atmosphere. The results were published in the journal Nature.

Turning Human Waste into Plastic, Nutrients Could Aid Long-Distance Space Travel

Astronauts could someday benefit from recycling human waste on long space trips (photo illustration). Credit: American Chemical Society

Imagine you’re on your way to Mars, and you lose a crucial tool during a spacewalk. Not to worry, you’ll simply re-enter your spacecraft and use some microorganisms to convert your urine and exhaled carbon dioxide (CO2) into chemicals to make a new one. That’s one of the ultimate goals of scientists who are developing ways to make long space trips feasible.

Night-time Snow Storms on Mars

Sketch showing the processes of Martian snowfall. Image Credit: Nature Geoscience

Mars has surprisingly powerful snowstorms, which form at night. Although the planet has relatively little water vapor in its atmosphere, clouds of water-ice crystals can still develop. A team led by Aymeric Spiga of the Laboratory of Dynamic Meteorology in Paris used a high-resolution atmospheric model to study how those clouds behave over the Tharsis Montes region of Mars.

Study Finds that Gravity, ‘Mechanical Loading’ are Key to Cartilage Development

The spectrum of mechanical loading conditions applied to articular cartilage in the synovial joint. At one end of the spectrum, articular cartilage is subjected to cyclic hydrostatic pressure when an individual walks or runs. Alternatively, astronauts on long-term space missions experience mechanical unloading within their joints. To simulate these conditions experimentally, loading can be simulated using a hydrostatic pressure vessel and unloading can be simulated in a rotating wall vessel bioreactors. Courtesy of Aerospace Medicine and Human Performance.

Mechanical loading, or forces that stimulate cellular growth for development, is required for creating cartilage that is then turned to bone; however, little is known about cartilage development in the absence of gravity or mechanical loads. Now, in a study led by the University of Missouri, bioengineers have determined that microgravity may inhibit cartilage formation. Findings reveal that fracture healing for astronauts in space, as well as patients on bed rest here on Earth, could be compromised in the absence of mechanical loading.

Tuesday, August 22, 2017

Dino-Killing Asteroid Could Have Thrust Earth into Two Years of Darkness

An illustration of an asteroid impacting Earth. (Image courtesy NASA.)

Tremendous amounts of soot, lofted into the air from global wildfires following a massive asteroid strike 66 million years ago, would have plunged Earth into darkness for nearly two years, new research finds. This would have shut down photosynthesis, drastically cooled the planet, and contributed to the mass extinction that marked the end of the age of dinosaurs.

A Silent Search for Dark Matter

The world's most sensitive dark matter detector demonstrates record low radioactivity levels. Credit: XENON Collaboration

Results from its first run indicate that XENON1T is the most sensitive dark matter detector on Earth. The sensitivity of the detector – an underground sentinel awaiting a collision that would confirm a hypothesis – stems from both its size and its “silence.” Shielded by rock and water, and purified with a sophisticated system, the detector demonstrated a new record low radioactivity level, many orders of magnitude below surrounding material on Earth.

The Moving Martian Bow Shock

The moving Martian bow shock. Credit: ESA/ATG medialab

As the energetic particles of the solar wind speed across interplanetary space, their motion is modified by objects in their path. A study, based on data from ESA's Mars Express orbiter, has thrown new light on a surprising interaction between the planet Mars and supersonic particles in the solar wind.