Monday, May 2, 2016

Three Potentially Habitable Planets Found Orbiting a Tiny Nearby Star

Artist’s impression of the ultracool dwarf star TRAPPIST-1 from close to one of its planets. Credit: ESO/M. Kornmesser

Astronomers using the TRAPPIST telescope at ESO’s La Silla Observatory have discovered three planets orbiting an ultracool dwarf star just 40 light-years from Earth. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. The new results were published in the journal Nature on May 2, 2016.

A team of astronomers led by Michaël Gillon, of the Institut d’Astrophysique et Géophysique at the University of Liège in Belgium, have used the Belgian TRAPPIST telescope to observe the star 2MASS J23062928-0502285, now also known as TRAPPIST-1. They found that this dim and cool star faded slightly at regular intervals, indicating that several objects were passing between the star and the Earth. Detailed analysis showed that three planets with similar sizes to the Earth were present.

TRAPPIST-1 is an ultracool dwarf star — it is much cooler and redder than the Sun and barely larger than Jupiter. Such stars are both very common in the Milky Way and very long-lived, but this is the first time that planets have been found around one of them. Despite being so close to the Earth, this star is too dim and too red to be seen with the naked eye or even visually with a large amateur telescope. It lies in the constellation of Aquarius (The Water Carrier).

Emmanuël Jehin, a co-author of the new study, is excited: “This really is a paradigm shift with regards to the planet population and the path towards finding life in the Universe. So far, the existence of such ‘red worlds’ orbiting ultra-cool dwarf stars was purely theoretical, but now we have not just one lonely planet around such a faint red star but a complete system of three planets!”

Michaël Gillon, lead author of the paper presenting the discovery, explains the significance of the new findings: "Why are we trying to detect Earth-like planets around the smallest and coolest stars in the solar neighborhood? The reason is simple: systems around these tiny stars are the only places where we can detect life on an Earth-sized exoplanet with our current technology. So if we want to find life elsewhere in the Universe, this is where we should start to look."

Astronomers will search for signs of life by studying the effect that the atmosphere of a transiting planet has on the light reaching Earth. For Earth-sized planets orbiting most stars this tiny effect is swamped by the brilliance of the starlight. Only for the case of faint red ultra-cool dwarf stars — like TRAPPIST-1 — is this effect big enough to be detected.

Follow-up observations with larger telescopes, including the HAWK-I instrument on ESO’s 8-meter Very Large Telescope in Chile, have shown that the planets orbiting TRAPPIST-1 have sizes very similar to that of Earth. Two of the planets have orbital periods of about 1.5 days and 2.4 days respectively, and the third planet has a less well determined period in the range 4.5 to 73 days.

Artist’s impression of the ultracool dwarf star TRAPPIST-1 from the surface of one of its planets. Credit: ESO/M. Kornmesser
Artist’s impression of the ultracool dwarf star TRAPPIST-1 from the surface of one of its planets. Credit: ESO/M. Kornmesser

"With such short orbital periods, the planets are between 20 and 100 times closer to their star than the Earth to the Sun. The structure of this planetary system is much more similar in scale to the system of Jupiter’s moons than to that of the Solar System," explains Michaël Gillon.

Although they orbit very close to their host dwarf star, the inner two planets only receive four times and twice, respectively, the amount of radiation received by the Earth, because their star is much fainter than the Sun. That puts them closer to the star than the habitable zone for this system, although it is still possible that they possess habitable regions on their surfaces. The third, outer, planet’s orbit is not yet well known, but it probably receives less radiation than the Earth does, but maybe still enough to lie within the habitable zone.

"Thanks to several giant telescopes currently under construction, including ESO’s E-ELT and the NASA/ESA/CSA James Webb Space Telescope due to launch for 2018, we will soon be able to study the atmospheric composition of these planets and to explore them first for water, then for traces of biological activity. That's a giant step in the search for life in the Universe," concludes Julien de Wit, a co-author from the Massachusetts Institute of Technology (MIT) in the USA.

This work opens up a new direction for exoplanet hunting, as around 15% of the stars near to the Sun are ultra-cool dwarf stars, and it also serves to highlight that the search for exoplanets has now entered the realm of potentially habitable cousins of the Earth. The TRAPPIST survey is a prototype for a more ambitious project called SPECULOOS that will be installed at ESO’s Paranal Observatory.

“The kind of planets we've found are very exciting from the perspective of searching for life in the universe beyond Earth,” says Adam Burgasser, a professor of physics at the University of California San Diego’s Center for Astrophysics and Space Sciences and a key participant of the international team.

"While such a ‘cold’ star might sound exotic, many, if not most, of the stars in our Milky Way Galaxy are of this cool, red, small and dim variety,” Burgasser says. “If Earth-like planets around these stars turn out to be common, there may be many more habitable planets out there than current estimates predict.”

TRAPPIST (the TRAnsiting Planets and PlanetesImals Small Telescope) is a Belgian robotic 0.6-metre telescope operated from the University of Liège and based at ESO’s La Silla Observatory in Chile. It spends much of its time monitoring the light from around 60 of the nearest ultracool dwarf stars and brown dwarfs (“stars” which are not quite massive enough to initiate sustained nuclear fusion in their cores), looking for evidence of planetary transits.The target in this case, TRAPPIST-1, is an ultracool dwarf, with about 0.05% of the Sun’s luminosity and a mass of about 8% that of the Sun.

This research was presented in a paper entitled “Temperate Earth-sized planets transiting a nearby ultracool dwarf star”, by M. Gillon et al., to appear in the journal Nature.

The team is composed of: M. Gillon (Institut d’Astrophysique et Géophysique, Université de Liège, Belgium), E. Jehin (Institut d’Astrophysique et Géophysique, Université de Liège, Belgium), S. M. Lederer (NASA Johnson Space Center, USA), L. Delrez (Institut d’Astrophysique et Géophysique, Université de Liège, Belgium), J. de Wit (Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, USA), A. Burdanov (Institut d’Astrophysique et Géophysique, Université de Liège, Belgium), V. Van Grootel (Institut d’Astrophysique et Géophysique, Université de Liège, Belgium), A. J. Burgasser (Center for Astrophysics and Space Science, University of California, San Diego, USA and Infrared Telescope Facility, operated by the University of Hawaii), C. Opitom (Institut d’Astrophysique et Géophysique, Université de Liège, Belgium), A. H. M. J. Triaud (Cavendish Laboratory, Cambridge, UK), B-O. Demory (Cavendish Laboratory, Cambridge, UK), D.K. Sahu (Indian Institute of Astrophysics, Bangalore, India), D. B. Gagliuffi (Center for Astrophysics and Space Science, University of California, San Diego, USA and Infrared Telescope Facility, operated by the University of Hawaii), P. Magain (Institut d’Astrophysique et Géophysique, Université de Liège, Belgium) and D. Queloz (Cavendish Laboratory, Cambridge, UK).

Credit: ESONASAmit.eduucsd.edu

5 comments:

  1. Great post i must say and thanks for the information. Education is definitely a sticky subject. However, is still among the leading topics of our time. I appreciate your post and look forward to more awriter.org

    ReplyDelete
  2. It is just what I was looking for and quite thorough as well. Thanks for posting this. Emblem Zone

    ReplyDelete
  3. Get the best Dissertation & Custom Essay Writing Service from our Qualified Writers. Trust the best and never regret. Try our Essay Help and see the difference in your grades.
    Custom Essay Writing Services

    ReplyDelete
  4. Fastest Dissertation Help from Best Writers. Get Resonable Dissertation Writing Service. Send us Details with Deadline. No registration required.
    Expert Writers

    ReplyDelete
  5. Statistics Homework Help Available! SPSS or Excel? Send us your Statistics Assignments and Get them completed on time at rock bottom prices!

    ReplyDelete