Friday, December 14, 2018

ESO’s R Aquarii Week Continues with the Sharpest R Aquarii Image Ever

While testing a new subsystem on the SPHERE planet-hunting instrument on ESO’s Very Large telescope, astronomers were able to capture dramatic details of the turbulent stellar relationship in the binary star R Aquarii with unprecedented clarity — even compared to observations from the NASA/ESA Hubble Space Telescope.  This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, as well as the jets of material spewing from the stellar couple.  Credit: ESO/Schmid et al.

While testing a new subsystem on the SPHERE planet-hunting instrument on ESO’s Very Large Telescope, astronomers were able to capture dramatic details of the turbulent stellar relationship in the binary star R Aquarii with unprecedented clarity — even compared to observations from Hubble.

Bose-Einstein Condensates Are Currently Not Able to Detect Gravitational Waves

The illustration shows how two black holes merge. This causes gravitational waves to emerge.  Foto: LIGO / T. Pyle

The gravitational waves created by black holes or neutron stars in the depths of space indeed reach Earth. Their effects, however, are so small that they could only be observed so far using kilometer-long measurement facilities. Physicists therefore are discussing whether ultracold and miniscule Bose-Einstein condensates with their ordered quantum properties could also detect these waves.

Taming Turbulence: Seeking to Make Complex Simulations a Breeze

An improved model for how shear-flow turbulence changes in different systems will more easily address previously intractable problems for understanding phenomena such as star formation and the dynamics of galaxies without the need for expensive supercomputers. NASA, ESA, THE HUBBLE HERITAGE TEAM (STSCI/AURA)

For scientists wrestling with problems as diverse as containing superhot plasma in a fusion reactor, improving the accuracy of weather forecasts, or probing the unexplained dynamics of a distant galaxy, turbulence-spawning shear flow is a serious complicating factor.

Terahertz Laser for Sensing and Imaging Outperforms Its Predecessors

A tiny terahertz laser designed by MIT researchers is the first to reach three key performance goals at once: high power, tight beam, and broad frequency tuning.  Courtesy of the researchers

A terahertz laser designed by MIT researchers is the first to reach three key performance goals at once — high constant power, tight beam pattern, and broad electric frequency tuning — and could thus be valuable for a wide range of applications in chemical sensing and imaging.

Thursday, December 13, 2018

ALMA Campaign Provides Unprecedented Views of the Birth of Planets

Labeled version of four of the twenty disks that comprise ALMA's highest resolution survey of nearby protoplanetary disks. - AS 209 is a star hosting a disk that is 1 million years old and located about 400 light-years from Earth. The ALMA image shows a tightly packed series of dusty rings in its inner disk and two additional thin bands of dust very far from the central star. - HD 143006 is about 5 million years old and resides 540 light-years from Earth. This star hosts a disk that shows wide gaps between dusty lanes that demarcate the inner and outer portions of the disk. A dense arc-shaped region, possibly heralding a concentration of material where comets or other icy bodies are forming, can be seen on the lower left portion of the outer ring. - ALMA reveals sweeping spiral arms in the dust disk orbiting IM Lup, a young star located about 515 light-years from Earth. These patterns may be the result of an unseen planetary companion perturbing the disk, or a global instability in the disk structure similar to those seen in spiral galaxies like the Milky Way. - AS 205 is a multiple star system, with each star sporting its own dusty disk. Since most stars in the Milky Way are multiples, this observation provides clues to the potential for planets in such systems. This system is located about 420 light-years from Earth. Credit: ALMA (ESO/NAOJ/NRAO) S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

Astronomers have cataloged nearly 4,000 exoplanets in orbit around distant stars. Though the discovery of these newfound worlds has taught us much, there is still a great deal we do not know about the birth of planets and the precise cosmic recipes that spawn the wide array of planetary bodies we have already uncovered, including so-called hot Jupiters, massive rocky worlds, icy dwarf planets, and – hopefully someday soon – distant analogs of Earth.

Chang'e-4 Spacecraft Enters Lunar Orbit

The Chang'e-4 lander moments after separation from the third stage of the Long March 3B launch vehicle which sent the craft into trans-lunar injection. Framegrab/ourspace

China's Chang'e-4 probe decelerated and entered the lunar orbit Wednesday, completing a vital step on its way to make the first-ever soft landing on the far side of the moon, the China National Space Administration (CNSA) announced.

Preparing for Discovery With NASA's Parker Solar Probe

This image from Parker Solar Probe's WISPR (Wide-field Imager for Solar Probe) instrument shows a coronal streamer, seen over the east limb of the Sun on Nov. 8, 2018, at 1:12 a.m. EST. Coronal streamers are structures of solar material within the Sun's atmosphere, the corona, that usually overlie regions of increased solar activity. The fine structure of the streamer is very clear, with at least two rays visible. Parker Solar Probe was about 16.9 million miles from the Sun's surface when this image was taken. The bright object near the center of the image is Mercury, and the dark spots are a result of background correction. Credits: NASA/Naval Research Laboratory/Parker Solar Probe

Weeks after Parker Solar Probe made the closest-ever approach to a star, the science data from the first solar encounter is just making its way into the hands of the mission's scientists. It's a moment many in the field have been anticipating for years, thinking about what they'll do with such never-before-seen data, which has the potential to shed new light on the physics of our star, the Sun.