Astronomy and Space News - Astro Watch: Researchers Report on Simulated Extravehicular Activity Science Operations for Mars Exploration

Advertisement

Sunday, March 10, 2019

Researchers Report on Simulated Extravehicular Activity Science Operations for Mars Exploration

Researchers examine basalt rock similar to samples that are on Mars. Credit: Zara Mirmalek

A new study describes the Science Operations component and new results from NASA’s Biologic Analog Science Associated with Lava Terrains (BASALT). The goal of BASALT was to provide evidence-based recommendations for future planetary extravehicular activity (EVA), simulating in particular the conditions associated with conducting human scientific exploration on Mars.

The article appears in a Special Issue on BASALT led by Guest Editor Darlene Lim, PhD, NASA Ames Research Center and published in Astrobiology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

The article entitled “Using Science-Driven Analog Research to Investigate Extravehicular Activity Science Operations Concepts and Capabilities for Human Planetary Exploration” was lead-authored by K.H. Beaton, KBRwyle (Houston, TX) and NASA Johnson Space Center (Houston) and a team of researchers from these institutions, Jacobs Technology (Houston), Idaho State University (Pocatello), McMaster University (Hamilton, Canada), University of Edinburgh (Scotland), BAER Institute (Moffett Field, CA), and NASA Ames Research Center (Moffett Field).

In the article, the researchers focus on the study design and results of the second field deployment of BASALT. They describe the overall scientific objectives and rules of the EVA, critical capabilities needed for science-driven EVAs and specific activities such as sampling and communication, EVA distance and duration of deployment, individual roles and responsibilities of the extravehicular and intravehicular crews, needs for data and image capture. They also present recommendations for future directions and subsequent research objectives.

“As we move human exploration back to the Moon, into deep space and onwards to Mars, it will be important for the science and exploration communities to identify EVA design requirements that will simultaneously uphold safety and operational standards, while enabling flexibility for scientific exploration,” says Dr. Lim. “Beaton et al, along with many of the research papers included in the BASALT special issue, used systematic analytical approaches to spearhead this process of identifying which capabilities and operational concepts will enable science and discovery during human missions to Mars.”

Researchers simulated mission conditions on Mars in several scenarios which included conducting field work in the unforgiving, Mars-like terrain of Craters of the Moon National Park Monument and Preserve in Idaho and the Hawaii Volcanoes National Park.

These regions are rich in basalt, a fine-grained rock similar to rock found on Mars. Scientists hope samples can provide important clues in the ongoing search for life on Mars.

Supported by funding from the Canadian Space Agency, Allyson Brady, a post-doctoral fellow in McMaster's School of Geography & Earth Sciences, who is working with her adviser Greg Slater on the project, is investigating organic biomarkers of microbial life associated with the rocks.

"When astronauts finally go to Mars, we need to identify the best place to potentially find evidence of life and to target the kind of basalt rock samples which may contain a lot of organic material, for example," explains Brady. "There will be many, many limitations on Mars so we need to consider the best way to conduct research and gather samples including getting timely feedback from science experts on Earth."

Brady and NASA scientists are also considering the challenges of sharing information when teams are millions of kilometers apart. For example, they tested different forms of communications--video and photo transmissions, voice messaging, texting using specialized software--between field researchers, who wore communications packs as an astronaut might, and mission control.

"There can be a significant delay, as long as 20 minutes, between an astronaut on Mars and the team on earth," explains Brady. "So we are working to optimize operations so astronauts don't have idle time and the flow of information continues," she says.



No comments:

Post a Comment